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Abstract. We perform numerical simulations of the quantum mechanical transport and
corresponding wave-functions in open, square quantum dots. The effects of inelastic scattering
are introduced phenomenologically. Examining the root mean square amplitude of the
conductance fluctuations, we find they decay exponentially with 1/τφ (τφ being the inelastic
scattering time), in good agreement with the results of recent experiments. In previous work,
we have found the wave-functions of such dots should be ‘scarred’. We examine the robustness
of this scarring effect to the phase-breaking process.

The electrical properties of mesoscopic devices are well known to be influenced by electron
interference [1]. In disordered systems, electronic motion is diffusive and a significant
understanding of the processes affecting the interference has already been achieved. Recent
advances in semiconducting micro-processing technology now enable the fabrication of sub-
micrometre scale quantum dots, in which electronic motion is predominantly ballistic [2–6].
While precise details differ between experiments, the devices usually consist of some central
scattering region, patterned on a length scale smaller than the elastic mean free path, and
connected to source and drain reservoirs via tunable quantum point contact leads. Large-
angle scattering of electrons is restricted to the boundaries of these devices, and relatively
little is known about the details of electron interference within them. Recent experiments
suggest, however, that their electrical properties are dominated by a characteristicperiodicity
in their magnetoconductance, which is replicated as strong periodic oscillations in the
fluctuation correlation function [6]. This periodicity arises from the remnants of regular,
semi-classical orbits within the dot. Theoretical simulation of the quantum transport in these
ballistic structures suggests that strong ‘scarring’ of the total wave-function is present in the
dot. The scarring can correspond to the remnants of just asingle classical orbit, which in
turn gives rise to theperiodicfluctuations in the low-field magneto-resistance of the devices
[8].

In this letter, a stable iterative matrix approach [7] is employed to investigate the effect
of finite phase breaking on the conductance fluctuations and on the wave-function scarring
in these ballistic quantum dots [8]. The method we employ allows evaluation of both
the dot conductance and the total wave-function. The phase breaking is accounted for
in a phenomenological fashion, being quantified in terms of a corresponding inelastic
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scattering timeτφ . For infinite τφ at suitably low temperatures, the wave-function is
found to be strongly scarred by the remnant of a single classical orbit, consistent with the
periodic fluctuations observed in experiment [4]. With increasing phase breaking, however,
the scarring is very rapidly destroyed. Simultaneously, the amplitude of the calculated
conductance fluctuations decays exponentially as a function of 1/τφ , in good agreement
with the results of experiments. Such agreement provides clear evidence that the transport
properties of mesoscopic devices can be strongly influenced by the quantum remnants of a
small group of classical orbits. We therefore briefly consider the process by which these
orbits come to dominate the transport characteristics.

For our simulations, the general situation is one in which ideal quantum wires, which
extend outward to±∞, are connected to a square quantum dot, with entry and exit ports
aligned at the top. A magnetic field is applied normal to the plane of the dot. We solve this
quantum mechanical problem on a discrete lattice using an iterative matrix method that is
numerically stabilized variant of the transfer matrix approach. The discretized Schrödinger
equation, keeping terms up to first order in the approximation of the derivative, has the
form (

EF − Hj

)
ψj + Hj,j−1ψj−1 + Hj,j+1ψj+1 = 0 (1)

where ψj is an M-dimensional vector containing the amplitudes of thej th slice. This
problem is solved on a square lattice of lattice constanta with the wires extendingM lattice
sites across in thex direction. That is, the region of interest is broken down into a series
of slices along they direction. In this equation, theHj matrices represent Hamiltonians
for individual slices and the matricesHj,j−1 and Hj,j+1 give the inter-slice coupling. By
approximating the derivative, the kinetic energy terms of Schrödinger’s equation are mapped
onto a tight-binding model witht = −h̄2/2m∗a2 representing nearest-neighbour hopping.
The potentialV at site i, j simply adds to the on-site energies, which appear along the
diagonal of theHj matrices. Transfer matrices based on (1) can then be derived, which allow
translation across the system to obtain the transmission coefficients, and which, in turn, enter
the Landauer–B̈uttiker formula to give the conductance. The instability problems inherent
in the transfer matrix approach due to exponentially growing and decaying contributions of
evanescent modes are overcome by some clever matrix manipulations [7]. Rather than just
multiplying transfer matrices together, the scheme is turned into an iterative procedure that
does not allow the eigenvalues to diverge.

The modification of this technique to take into account inelastic scattering and phase
randomization can be performed phenomenologically by introducing an imaginary potential
[9]. For an inelastic scattering timeτφ the original potentialV is modified to become
V − iVin, whereVin = h̄/(2τφ). In our calculations, we impose the phase breaking only in
the dot itself and not in the leads. One calculates the transmission and reflection coefficients
as before. Current conservation is maintained in the presence of the imaginary potential
since one can show that the current that is apparently lost from the propagating modes
actually goes into an inelastic scattering channel. The total inelastic scattering current is
given by

jin = (
1/τφ

) ∫ ∫
ψ∗ψ ds. (2)

We assume that this inelastic channel current is equally divided between the two leads
and add this to the results of the Landauer–Büttiker formula (which constitute the elastic
contribution) to obtain thetotal conductance. The quantity of main interest to us here, the
root mean square amplitude of the conductance fluctuationsδg, can be obtained from the
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correlation function,

F(1B) = 〈[g(B) − 〈g(B)〉][g(B + 1B) − 〈g(B)〉]〉 (3)

whereg(B) is the conductance in units ofe2/h, B is the magnetic field, and the angle
brackets indicate an average over a suitably large magnetic field range. The fluctuation
amplitude is then given byδg = [F(0)]1/2.

Figure 1. The root mean square average of the conductance fluctuations,δg, against 1/τφ for
(a) a 0.8µm quantum dot and (b) a 0.3µm dot. The solid dots represent the actual calculations
and the lines exponential fits to the data.

In figure 1(a), we plotδg as a function of 1/τφ for a 0.8µm nominally square quantum
dot with the carrier density set to be to a 4× 1011 cm−2. These parameters were chosen
in order to compare with recent experiments done on 1.0µm split-gate dots. The cavity
size was taken as 0.8µm here in order to account for depletion due to the fringing field
induced around the gate edges [3, 5]. The leads were adjusted to permit three propagating
modes, again comparable to experiment. The solid dots correspond to the actual calculation
and the line corresponds to an exponential fit to the data, which follows the data quite
closely. This trend agrees quite nicely with that determined experimentally (as will be
discussed below), which also shows exponential decay as a function of 1/τφ . In the case
of the experiment, values for 1/τφ were determined from the magnetic field dependent
evolution of the magneto-resistance fluctuations in the dots, using a simple edge state
skipping model [5, 10]. The values of this yields were found to be in good agreement
with those of an independent study by Clarkeet al [3]. The experimental exponential
decay constant however is about 30 ps, whereas here the fit yields a value of 28± 3 ps.
While this agreement is rather good, one must be aware that there are uncertainties in how
τφ is determined experimentally. For theoretical calculations, onenormally must calculate
the conductance by multiplying the zero-temperature results by the derivative of the Fermi
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function and integrating with respect to energy, while the calculations presented here only
consider the effects of phase breaking on the amplitude of the fluctuations. We will return
to this issue of thermal smearing below.

In figure 1(b),δg against 1/τφ is again plotted, but in this case for a 0.3µm square dot.
We have used the same electron density. In this case the number of propagating modes in
the leads is two; however this does not change the essential physics. As in the 0.8µm dot
case, the calculations (the dots) appear to follow a decaying exponential (the solid curve), in
this case with an overall decay constant of 11± 2 ps. Thatδg should decay more slowly in
the smaller dot can probably be attributed in large part to the fact the energy level spacing
is larger in the smaller dot, thus a largerVin is required to yield an equivalent effect. It
may be noted that the difference in the two values for the decay with phase-breaking time
roughly scales as the size of the dot, and not with its area. This is a further indication that
the key factor in the fluctuation is the path length along the regular trajectory as it closes
upon itself to create the interference that leads to the quantization of the orbit.

Figure 2. |ψ(x, y)| versusx andy for a 0.3µm dot atB = 0.28 T. Darker shading corresponds
to higher amplitude. (a)τφ = ∞; (b) τφ = 0.5 ns; (c) τφ = 0.1 ns; (d) τφ = 0.05 ns; (e)
τφ = 0.01 ns; (f)τφ = 0.001 ns.

We now turn to an examination of the wave-functions in these quantum dots in the
presence of inelastic scattering. As mentioned earlier, it has been found that the wave-
functions show evidence of ‘scarring’, that is, the amplitudes of the wave-functions are
highly concentratedalong underlying,single classical trajectories. The scarring is observed
at magnetic fields coincident with resonant maxima or minima in the conductance, but does
not necessarily occur at every such feature [8]. This dramatic effect is quite distinct from
more usual resonance phenomena, in which the wave-functions typically show a uniform
excitation that cannot be associated with single trajectories. An example of this scarring
effect is shown in figure 2(a), which shows a plot of|ψ(x, y)| againstx andy. The darker
shading indicates higher quantum mechanical amplitude. This picture corresponds to the
0.3 µm dot in figure 1, specifically forB = 0.28 T and zero temperature. It has been found
that this feature appears periodically with period1B ∼ 0.11 T, which coincides very well
with the dominant periodicity that was found generally in the conductance fluctuations, both
theoretically and experimentally [6]. The excitation of the modes represented by this figure
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corresponds to a swept orbit area in a manner similar to the Aharonov–Bohm criteria, that
is 1φ/φ0 = 2π for the difference in magnetic flux. Then one obtainsA ∼ 0.04 µm2 for
the enclosed area, which corresponds well with the enclosed area of the diamond scar in
figure 2(a).

The subsequent panels in figure 2 show the evolution|ψ(x, y)| for progressively shorter
inelastic scattering times. Note the non-linear fashion in which the scarring is disrupted by
increasing phase breaking. In particular, reducingτφ from infinity to 0.5 ns introduces
virtually no change in the scarring pattern. In the experiments, 0.5 ns is a typical value
for τφ for temperatures below 100 mK, and in this regime periodic fluctuations due to the
striking scarring have been clearly observed [6]. Reducingτφ by a further factor of five,
however, causes a significant disruption of the scarring pattern, although it is still clearly
apparent. A further factor of two decrease virtually destroys what remains of the original
diamond pattern. As indicated above, the amplitude of the fluctuations typically decays by
an order of magnitude on raising the temperature to 1 K, at which pointτφ is typically
of the order of 0.05 ns [3, 5]. This corresponds to a inelastic path lengthlφ = νF τφ of
about 15µm, still sufficient to make nearly twenty complete circuits of the scarred loop.
In other words, the scarring is very sensitively destroyed by phase breaking, as are the
associated periodic magneto-resistance fluctuations. Such sensitivity is presumably related
to the interference being dominated by the remnant of a single classical orbit. Indeed, in
experimental studies of much larger dots, where the characteristics of the interference were
consistent with a dense distribution of trajectories contributing to interference, a weaker
power law decay was observed by Clarkeet al [3]. The persistence of the diamond scar up
to τφ ∼ 0.1 ns also gives an approximate indication of how many circuits or orbits around
the scar over which phase coherence must be maintained for this feature to exist, the answer
being about forty. Needless to say, the electrons in this case are not taking a direct path
between the two leads, and are spending a considerable amount of time in the dot. Despite
this, it is evident from the diamond scar that the electrons trajectories are only alimited
portion of the entire area of the dot. This contrasts strongly with the assumptions made in
the semi-classical theory of chaotic dots in which a much more uniform sampling of the
dot is assumed [11].

A clue to the dominance of just a single trajectory in the wave-function and why there
is an apparent lack of straight-through trajectories comes from inspecting its form for the
case of very strong phase breaking. In particular, the emergence of a highly collimated
beam from the entrance point contact is apparent forτφ = 0.001 ns. The collimation results
from the waveguiding effects of the leads; the entry angle becomes strongly restricted by
quantization of the wave-vectors in they direction when there are just a few propagating
modes in the leads. In the final panel, this collimated beam essentially decays before
reaching the right-hand boundary of the dot, which is expected sincelφ in this instance is
less than the distance across the dot.

In figure 3, we compare the decay of the simulated fluctuations with the experimental
data as a function of the phase-breaking time. In both cases, the data have been normalized
to the values at the lowest data point, so just the decay with phase breaking is apparent.
Here, it may be seen that quite good agreement is obtained. This leads to the conclusion
that decay of the amplitude of the fluctuations is governed solely by the decay in the
phase-breaking time. Another important issue is that the experimental results were obtained
for increasingly higher temperatures, while the calculations here are performed for zero
temperature. It should be noted however that the experimental method for extractingτφ

involved exploiting its relationship with the correlation field at high magnetic field. The
latter was found experimentally to be relatively insensitive to temperature forT < 1 K [12].
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Figure 3. Comparison of the experimental data from a 1.0µm dot (◦ ), and the theoretical data
for the 0.8µm dot (• ). The two data sets are normalized to the first data point at the largest
value of the phase-breaking time. The experimental data displayed in figure 3 are combined
with results originally published in [4] (see figure 1(b)) and [5] (see figure 4).

Nevertheless, one needs to examine the role of the temperature.
We have also performed finite-temperature calculations for a 0.3µm dot, which take into

account the smearing of the Fermi function derivative. These calculations were performed
with slightly wider leads, so that three propagating modes were present. In figure 4,δg

against temperature is plotted, with the filled circles corresponding to the absence of inelastic
scattering while the open circles and crosses correspond to values ofτφ of 0.1 and 0.05 ns,
respectively, with these values heldfixed across the entire temperature range. The solid
lines are the fits obtained assuming an exponential decay law, which our calculations follow
quite closely. In fact, the decay constant with respect to temperature in each case is
about 0.9 ± 0.1 K−1 and the offsetting of the curves where phase breaking is present can
be accounted for entirely by multiplying the curve for no inelastic scattering by a factor
exp(−0.01)/τφ), indicating the exponential behaviour with respect to 1/τφ holds even in
the presence of thermal smearing.Thus, the effects of phase breaking and thermal smearing
appear to be separable.

While the decay of the amplitude of the fluctuations for the 1.0/0.8 µm dot agrees well
between theory and experiment in figure 3, there is a difference between the two in terms
of the actual amplitude of the fluctuations. The theory can be seen in figure 1(a) to give a
value ofδg ≈ 0.5, while the experimental value (at the lowest temperature) is about 0.17.
To account for this decreased amplitude with an additional thermal smearing would require
a temperature of almost 1 K, or an additional phase-breaking process corresponding to a
decay of about 40 ns−1. The former is unlikely while the latter is clearly not found in the
experiment. In fact, there is no indication from figure 3 that thermal smearing plays any
role at all in the temperature dependence of the fluctuations in these regular dots, a result
hinted at earlier in discussion of the experimental results. It is expected that, in theoretical
discussions of the role of regular semi-classical orbits [13], the dominant decay mechanism
of the amplitude of the orbits is that of phase breaking. Because the regular orbits do not
represent a sample of the full density of states within the dot, the normal concepts of thermal
smearing do not appear to be appropriate to these structures.

One must consider, however, the possibility that the experimental sample is not at
the low temperature of the refrigerator. However, it is clear from the measurements
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Figure 4. δg against temperature for a 0.3µm dot for τφ = ∞ (filled circles), τφ = 0.1 ns
(open circles) andτφ = 0.05 ns (crosses). The solid lines are exponential fits to the data.

that a temperature variation of the phase-breaking time is being observed at the lowest
temperatures, which means that the sample is probably well coupled to the refrigerator heat
sink. It is also possible that the device is out of equilibrium. In particular, even with
0.1 nA of current, the resistance of the device would suggest that a voltage drop of several
microvolts is appearing across the lead openings. This possible voltage drop is well below
that required to induce an energy spread corresponding to the 1 K value inferred above.
However, the theory only includes phase breakingwithin the dot. There is also a possibility
of phase breaking within the leads, and within the two-dimensional gas outside the dot.
These effects would lead to an additional reduction of the amplitude. Further work on the
quantitative agreement between experiment and theory is under way.

In conclusion, we have found that the amplitude of the conductance fluctuations in
square quantum dots decays exponentially with 1/τφ , in good agreement with experiment.
The change in the rate of decay with dot size indicates that path length along the regular
trajectory is crucial. The scarring of the wave-function, which is tied to the periodicity
of the magnetoconductance fluctuations, also reflects the exponential behaviour in 1/τφ ,
as its disruption with respect toτφ occurs in a highly nonlinear way. In addition, one
can look at figure 2 in a somewhat different light, in that as one increases the size of the
coherence time, we are in fact observing thetime developmentof the transient buildup of
the wave-function for carriers injected into the ballistic dot. It is clear that the carriers
must be in the dot for a considerable length of time (many orbits) in order for the scar to
be developed, and consequently for the periodic oscillations in the magneto-resistance to
become fully developed. The decay of the fluctuation amplitude found here, along with
the breakup of the scarring, further reinforce the conclusions that these dots are regular
structures in which the magnetoconductance is dominated by one, or a few, remnants of
semi-classical (regular) orbits that persist within the dot. In regard to this, it should be
noted that the diamond shaped scar shown here for the 0.3µm dot has also been found in
the larger 0.8µm dot. Combining the effects of phase breaking with thermal smearing, we
find the latter also causes the fluctuation amplitude to decay exponentially and the two in
combination result in a simple addition of decay rates, although we point out that there is
no evidence of thermal smearing required to fit the experimental data.
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